Ensembles finis Exemples

Resolva para t 60=(980(t)^2)/(4(3.14)^2)
Étape 1
Réécrivez l’équation comme .
Étape 2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez à partir de .
Étape 2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Factorisez à partir de .
Étape 2.2.2
Annulez le facteur commun.
Étape 2.2.3
Réécrivez l’expression.
Étape 3
Multipliez les deux côtés par .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1.1
Élevez à la puissance .
Étape 4.1.1.2
Factorisez à partir de .
Étape 4.1.1.3
Factorisez à partir de .
Étape 4.1.1.4
Séparez les fractions.
Étape 4.1.1.5
Divisez par .
Étape 4.1.1.6
Divisez par .
Étape 4.1.1.7
Élevez à la puissance .
Étape 4.1.1.8
Multipliez par .
Étape 4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Élevez à la puissance .
Étape 4.2.1.2
Multipliez par .
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Divisez chaque terme dans par .
Étape 5.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1.1
Annulez le facteur commun.
Étape 5.1.2.1.2
Divisez par .
Étape 5.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.3.1
Divisez par .
Étape 5.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 5.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 5.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 5.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 6
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :